

May 2024

twoday
Application
Modernization

Pipeline

by Mantas Urbonas and Eugenijus Medelis

Summary

This paper describes techniques for unsupervised (automated) large scale tech debt cleanup performed

by twoday AMP tool. This technique has only become feasible due to the recent advances in generative

AI.

The tool guarantees preservation of exact original semantics of the source code before and after the

refactoring. This security guarantee, however, puts a limitation on the types of refactoring that the tool

is able to do, which are discussed in detail within the paper.

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 2 of 14

Introduction

A large portion of software currently in use contains a significant level of tech debt. Various surveys

give somewhat different statistics but the problem is sizable1. Tech debt can be assessed in different

ways, and there are multiple specialized tools analyzing code bases – such as Sonar Cube, Cast

Software, Code Scene being several examples.

Obviously, the detection (and analysis) of tech debt is not solving the actual problem. Each identified

instance of problematic code still needs to be fixed manually, either by editing the code fragment

manually or with some help from IDE. Most modern language ecosystems have all kinds of means for

manually triggered code improvements (e.g. Built-in IDE features, OpenRewrite for Java, ReSharper for

C# etc.). Generative AI tools, such as Github Copilot can offer intelligent code refactoring, however

they need a close supervision from human programmers as the Generative AI is still very unreliable

(the produced code tends to introduce new bugs or change original semantics).

In this paper we present AMP - our novel Generative-AI powered source code improvement tool, that

eliminates certain types of tech debt in unsupervised (fully automated) manner while preserving the

exact original code semantics. We do not aim to eliminate 100% of tech debt; rather, we address only

specific instances that (a) guarantee 100% identical semantics after the transformation; and (b) have

high probability of readability improvements.

Such functionality was unattainable before the advent of Generative AI.

1 https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-
standard-to-tame-technical-debt

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 3 of 14

Motivation

The examples below are simplified and distilled fragments from actual production code, each originally

exceeding 500 lines. The code became convoluted for various reasons, such as time pressure,

absence of quality control mechanisms, or insufficient developer expertise. The current maintenance

team is hesitant to modify this code as it has a Cognitive Complexity index > 70, indicating that it is

difficult to fully comprehend.

Example 1:

/* BEFORE */

void print(Param param) {
 if (param != Param.one) {
 if (param != Param.two) {
 System.out.println("three");
 } else {
 System.out.println("two");
 }
 }
 else
 if (param != Param.two) {
 if (param != Param.three)
 System.out.println("one");
 else
 System.out.println("three");
 }
 else
 if (param != Param.three) {
 if (param != Param.one)
 System.out.println("two");
 else
 System.out.println("one");
 }
}

 /* AFTER: conditions distilled */

 void print(Param param) {
 switch(param){
 case one: printParamOne(param); break;
 case two: printParamTwo(param); break;
 case three: printParamThree(param); break;
 default: printParamDefault(param); break;
 }
 }

 private void printParamOne(Param param) {
 System.out.println("one");
 }

 private void printParamTwo(Param param) {
 System.out.println("two");
 }

 private void printParamThree(Param param) {
 System.out.println("three");
 }

 private void printParamDefault(Param param) {
 System.out.println("three");
 }

Example 2:

/* BEFORE */

if (a < 0) {
 if (b < 0) {
 if (c >= 0) {
 // actual processing here
 ...
 }
 else {
 throw new RuntimeException(
 "c must be positive");
 }
 }
 else {
 throw new RuntimeException(
 "b must be negative");
 }
}
else {
 throw new RuntimeException(
 "a must be negative");
}

 /* AFTER: early return guards */

 if (a >= 0)
 throw new RuntimeException(
 "a must be negative");
 if (b >= 0)
 throw new RuntimeException(
 "b must be negative");
 if (c < 0)
 throw new RuntimeException(
 "c must be positive");

 // actual processing here
 ...

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 4 of 14

We aim to transform the code into a form that is easier to read and maintain. AMP performs similar

transformations across entire codebase.

Note that out-of-the-box generative AI falls short of this goal. Even for a small code fragment, LLM

generates code with subtle differences in semantics, which most likely will mean unexpected behavior

in production.

Goals and Scope of AMP

AMP aims to improve maintainability of large legacy code bases. More specifically, it targets code

bases with > 100 K lines of code that contain significant number of methods with cognitive complexity

> 50. Typically, such software contains parts that are hard to comprehend, and the current

maintainers are reluctant to make changes due to a fear of accidental defect introduction.

For such codebases, AMP improves code readability up to the point where human maintainers can

become productive again. In certain cases, code readability improvements allow easy discovery of

logical bugs. Best improvement is seen on domain logic codebases, regardless of if its UI, server-side

or monoliths.

 A fundamental design principle of AMP is preservation of the exact original code semantics. Anymore

“drastic” code modifications are instead left for human maintainers to take care of.

Another design principle is transformation in atomic, well-defined steps rather than large leaps.

There are certain aspects that are outside the scope of AMP:

• Changing of the coding paradigm, i.e. from imperative to declarative or from OOP to functional.

While some programmers may prefer different coding styles, our goal is simplifying the original code

rather than a complete re-write in another paradigm.

• Architecture-level refactoring.

AMP focus is on eliminating code smells at the method- and class level, rather than architectural level

fixes.

• Generation of unit tests or code documentation.

There are other technologies that use Generative AI for such goals.

Note however that AMP guarantees identical functionality after the transformation, hence we can

transform legacy code that either does or does not have unit test coverage.

• Version updates.

No dependencies, libraries, tools or language versions are changed, as this involves high risks.

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 5 of 14

Some of the Code Transformations

Extracting condition trees

By “condition trees” we mean any non-trivial conditional statement that focus solely on assigning a

value to a single variable. It is a specific case of multi-branch IF statement.

A condition tree example might look like this:

 DateTimeFormatter formatter;

 if (pattern == null || pattern.equals(DEFAULT_FORMAT))
 formatter = ISO_FIXED_FORMATTER;
 else if (pattern.length()==5) {
 if (isNumeric(pattern))
 formatter = TIMESTAMP_FORMATTER;

 else
 formatter = INVALID_FORMATTER;
 }
 else if (configSettings.hasFormatter(pattern))
 formatter = configSettings.getFormatter(pattern);
 else
 formatter = DEFAULT_FORMATTER;

Such condition trees are ideal candidates for method extraction because a complex structure gets

replaced by a single call to a low-level method with a clear single responsibility, i.e.

DateTimeFormatter formatter = getFormatter(format);

Multiple syntactic and semantic preconditions must be met for a condition tree extraction. For

example, this block should NOT be extracted because one branch (line 5) is an early return:

1
2
3
4
5
6
7

if (condition1)
 value = ISO_FIXED_FORMATTER;
else
if (condition2)
 return something;
else
 value = DEFAULT_FORMATTER;

AMP performs multiple validations at abstract syntax tree level ensuring semantic and syntactic

correctness before continuing with method extraction.

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 6 of 14

Modifying condition trees prior to extraction

In certain cases AMP first attempts certain modifications of the original condition tree. Consider a

similar example where the IF statement (lines 1 to 7) cannot be directly extracted into a separate

method:

1
2
3
4
5
6
7
8
9

 if (pattern == null || pattern.equals(DEFAULT_FORMAT))
 formatter = ISO_FIXED_FORMATTER;
 else
 if (pattern.length()==5)
 return FIVE_CHARS_FORMATTER.format(input);
 else
 formatter = DEFAULT_FORMATTER;

 return formatter.format(input);

However, the code above can be safely transformed into this (equivalent) form:

1
2
3
4
5
6
7

 if (pattern == null || pattern.equals(DEFAULT_FORMAT))
 return ISO_FIXED_FORMATTER.format(input);
 else
 if (format.length()==5)
 return FIVE_CHARS_FORMATTER.format(input);
 else
 return DEFAULT_FORMATTER.format(input);

which finally can be extracted into a separate high-level method leaving only

1 return formatByPattern(pattern, input);

One might argue that an intermediate step is not strictly necessary, as a single-step action could

achieve the same result (i.e. extracting the IF statement together with the following RETURN

statement, lines 1 to 9). Most likely an experienced human programmer would do this in one step,

marking these lines in IDE and invoking the “extract method” refactoring.

However, as a general principle, we prefer to employ multiple simpler transformation steps whenever

possible. Moreover, we have observed that generative AI provides much better method naming for a

“normalized condition tree” form.

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 7 of 14

Distilling conditional statements
(extracting the State pattern)

Consider the following code fragment:

 void print(Param param) {
 if (param != Param.one) {
 if (param != Param.two) {
 System.out.println("three");
 } else {
 System.out.println("two");
 }
 }
 else
 if (param != Param.two) {
 if (param != Param.three)
 System.out.println("one");
 else
 System.out.println("three");
 }
 else
 if (param != Param.three) {
 if (param != Param.one)
 System.out.println("two");
 else
 System.out.println("one");
 }
 }

Here multiple condition branches test against the same invariant param. Such code form is quite

confusing and difficult for humans to understand.

Interestingly, such code is also somewhat confusing for LLMs. Here are the outputs from several top-

ranking models2:

ChatGPT 4

CodeLlama 70b-instruct

void print(Param param) {
 switch (param) {
 case one:
 System.out.println("one");
 break;
 case two:
 System.out.println("two");
 break;
 case three:
 System.out.println("three");
 break;
 default:
 // Handle unexpected cases
 // or do nothing
 break;
 }
}

 void print(Param param) {
 if (param == Param.one) {
 System.out.println("one");
 } else if (param == Param.two) {
 System.out.println("two");
 } else if (param == Param.three) {
 System.out.println("three");
 }
}

2 prompt: “Refactor the following Java code, preserving the exact original semantics”

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 8 of 14

Although the LLM refactored code seems convincing at a first glance, it actually has a subtle change in

original semantics. Here is the AMP-transformed code that preserves the exact entire original

behavior:

 void print(Param param) {
 switch(param){
 case one: printOne(param); break;
 case two: printTwo(param); break;
 case three: printThree(param); break;
 default: printDefault(param); break;
 }
 }

 private void printOne(Param param) {
 System.out.println("one");
 }

 private void printTwo(Param param) {
 System.out.println("two");
 }

 private void printThree(Param param) {
 System.out.println("three");
 }

 private void printDefault(Param param) {
 System.out.println("three");
 }

Here AMP carefully examined the original code fragment and distilled the lines for each of the possible

variable value. Every distilled case is extracted to a separate method resulting in a much cleaner form.

We believe that such refactoring is a good step toward a better object oriented design: this code form

now enables (and encourages) the human programmer to apply a “Replace Conditional With

Polymorphism” refactoring:

 interface IParamSpecificAlgorithm {
 void print();
 // not covered by examples above, but following the same pattern:
 void verifyInput(String input);
 void encrypt(String content);
 }

 void print(Param param) {
 getParamSpecificAlgorithm(param).print();
 }

 void verifyInput(String input, Param param) {
 getParamSpecificAlgorithm(param).verifyInput(input);
 }

 void encrypt(String content, Param param) {
 getParamSpecificAlgorithm(param).encrypt(content);
 }

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 9 of 14

Extracting code blocks into methods

We strongly support notion that long methods with multiple responsibilities are difficult to comprehend

and maintain:

1

2

…

13
14

15
16

…

27

28
29

30

…
41

42
43

44

…

54
…

 if (object instanceof int[]) {
 // 10 lines of serialization of int[] array
 ...

 }
 else
 if (object instanceof short[]) {
 // 10 lines of serialization of short[] array

 ...
 }
 else
 if (object instanceof long[]) {
 // 11 lines of serialization of long[] array

 ...
 }
 else
 if (object instanceof boolean[]) {
 // 10 lines of serialization of boolean[] array

 ...
 }
 ...

In comparison, this form is much more readable and maintainable:

1
2
3
4
5
6
7
8
9
10
11

 if (object instanceof int[])
 serializeIntArray((int[])object);

 else
 if (object instanceof short[])
 serializeShortArray((short[])object);
 else
 if (object instanceof long[])
 serializeLongArray((long[])object);
 else
 if (object instanceof boolean[])
 serializeBooleanArray((boolean[])object);

For most programmers, this latter form requires less mental effort to comprehend because it has

significantly less code, and that code consists of well named method calls; each of the sub-routines

have single responsibility and can be inspected in isolation.

Method extraction has multiple challenges and if done poorly can downgrade the maintainability.

AMP performs multiple heuristics on abstract syntax tree to assess relationships between code

elements and identify highly cohesive fragments. Next, we use modern LLMs to reason about

boundaries of areas that semantically and logically have the same responsibility. Finally, we ensure

that the target method is split into sufficiently large blocks so that high-level and low-level details

aren’t mixed in the same method.

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 10 of 14

One important aspect to consider is that naming and coding styles are subject to personal preference.

In the previous example, subroutines in lines 2,5,8 and 11 can be alternatively named “serialize(..)”,

“write(..)”, or “persist (…)”. Inconsistent naming and inconsistent coding style is also a tech debt. AMP

tries to make a best effort when creating new method names: therefore, we first analyze naming

conventions of other methods within the same compilation unit. Also, we always prefer to only make

necessary modifications only, so that the original programmers still find the code familiar.

Note that AMP performs automated, unsupervised method extraction refactorings quite late in the

overall process. This is because a series of smaller (atomic) improvements may improve the original

code, making the responsibility boundaries easier to identify, or sometimes eliminating the need for

method extraction at all.

Microimprovements

AMP performs several other localized incremental improvements.

For example, re-ordering the conditional branches and introducing early return guard conditions

makes a nominal reduction to cognitive complexity.

// before AMP

if (param1 != null) {
 if (param2 != null) {
 //process parameters
 ...
 } else
 throw new IllegalArgumentException(
 "param2 cannot be null");
} else
 throw new IllegalArgumentException(
 "param1 cannot be null");

 // after AMP

if (param1 == null)
 throw new IllegalArgumentException(
 "param1 cannot be null");

if (param2 == null)
 throw new IllegalArgumentException(
 "param2 cannot be null");

//process parameters
...

In isolation such an improvement is not very significant. However, applying similar improvements to

large complex conditional statements (spanning across dozens and hundreds of lines of code) does

make a measurable difference: the cognitive load on a human reader is significantly reduced. Note

that codebases having this kind of issue tend to have it across the code as well as occasional deep

nesting, so even though change itself is minor, the cumulative impact of such improvements can be

significant.

AMP ensures that no accidental error slips in when transforming conditions, making early returns etc.

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 11 of 14

Consequences to software asset quality

One obvious benefit for a readable code is that defects are much easier to spot. Consider this

example of AMP-processed code:

1
2
3
4
5
6
7
8

 // ...
 } else if (text.length() == 23)
 formatter = determine23charsFormatter(...);

 if (text.length() >= 17)
 formatter = determineAsianFormatter(...);

 // ...

Originally this code fragment was much longer, and the code in lines 3 and 6 were separated by

dozens of low-level codes. Now, after all the low-level code was extracted into separate methods, and

the high-level method calls ended up next to each other, a human reader can easily spot that line 6 is

always executed together with line 3 - which is probably not the intention. This defect was not

discovered for several years.

Most often local improvements in code-level hygiene do not immediately manifest in the code design.

However, we observed that after running an automated code cleanup the maintenance teams started

restructuring the code, relocating methods and moving them into newly discovered classes and

packages. We believe that a clean code is a prerequisite for emergent OO design.

Among other benefits, smaller methods and simplified conditionals help developers navigate within

the source code and locate areas for bug fixing or feature development, this way directly improves

productivity.

Arguably the largest obstacle to legacy software modernization lies in difficulties of decoupling key

business logic artifacts from the legacy infrastructure. Code cleanup enables code modularization and

separation of concerns, which is essential for business logic code reuse when migrating to new

frameworks and platforms.

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 12 of 14

Empirical statistics

We use cognitive complexity3 as a proxy to code-level tech debt level in the codebase.

Our tests demonstrate that AMP reduces cognitive complexity rate by up to 23% on either medium-

sized (> 15 000 LoC) and large (> 100 000 LoC) legacy Java codebases. For the most complex cases

(methods with CC >100) the improvements are much more significant.

Here is the statistics from one typical medium-sized project:

   Original Revised Change %

Entire codebase

Total Cognitive Complexity  16 537   13 344  -19,31%

Total number of methods  1 996 3 097  +55.16 %

Total LoC 44 089  44 918  +4,24%

methods with Cognitive

Complexity > 20

Number of methods  179   121  -32,4%

LoC  25 103   16 167  -35,60%

methods with Cognitive

Complexity > 100

Number of methods  26   18  -30,77%

LoC  8 685  5 564  -35,95%

Of course, not every codebase can be cleaned up. For active, well-maintained projects there is not

much room for improvement. Also, some domains are inherently complex (for example, highly

optimized ML or parser algorithms) and hence cannot be easily improved.

However, most legacy enterprise software projects do benefit significantly from large scale automated

code refactoring powered by artificial intelligence.

3 https://www.sonarsource.com/docs/CognitiveComplexity.pdf

https://www.sonarsource.com/docs/CognitiveComplexity.pdf

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 13 of 14

Confidentiality and IPR considerations

AMP tool uses Large Language Models at certain stages, and as such, the confidentiality and IPR

concerns must be clarified.

For performance and cost-effectiveness, AMP leverages online Azure services, which are optimized for

OpenAI models and offer the best price-to-value ratio. Microsoft Azure ensures robust data privacy

protections, which should satisfy most use cases. However, if these guarantees are not strong enough,

AMP can use locally hosted open source LLMs instead, such as Llama 3 and others. This configuration

ensures that no data exits the machine hosting AMP, allowing for a fully offline setup on customer

premises.

Regarding intellectual property, the primary concern is the potential for LLM-generated output to

inadvertently contain copyrighted material from third parties. AMP addresses this by guaranteeing that

any code being produced by it is entirely generated via an algorithmic transformation of the original

source code, and therefore does not incorporate any material of any third party. AMP employs LLMs in

roles akin to analysts or consultants, strictly limiting their use to generating method and variable

names without introducing any copyrighted or third-party source code.

twoday.com Denmark | Sweden | Norway | Finland | Lithuania Page 14 of 14

Contact Us for More Information

mantas.urbonas@twoday.com

eugenijus.medelis@twoday.com

www.twoday.com

www.twoday.lt

mailto:mantas.urbonas@twoday.com
mailto:eugenijus.medelis@twoday.com
http://www.twoday.com/
http://www.twoday.lt/

